Skip to main content
Log in

Reflectance Characteristics of Al Alloys Containing Si, Mg, Cu, and Lanthanide (Nd, Sm, Gd) for 3D Printing

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

To fabricate a low-reflectance aluminum alloy, we have analyzed the changes in reflectance according to the morphology, components, and composition of the aluminum alloy. We find that the larger the particle size of the powder, the lower is the reflectance. This is attributed to the fact that the larger the particle size, the greater is the amount of light absorbed into the interparticle space in the powder. In addition, the reflectance decreases with increase in the Si and Mg contents, because of the lower reflectance of the strengthening phase formed in the alloy as compared to that of aluminum. In contrast, lanthanide addition causes an increase in the reflectance, which is attributed to an increase in the electrical conductivity of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.R. Davis, Alloying: Understanding the Basics (ASM International, Russell Township, 1993), pp. 351–416

    Google Scholar 

  2. W.D. Callister, J. Rethwisch, Materials Science and Engineering: An Introduction, 7th edn. (Wiley, New York, 2007), pp. 5–7

    Google Scholar 

  3. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, Nature 549, 365 (2017)

    Article  Google Scholar 

  4. D. Manfredi, F. Calignano, M. Krishnan, R. Canali, E.P. Ambrosio, S. Biamino, D. Ugues, M. Pavese, P. Fino, Additive Manufacturing of Al Alloys and Aluminium Matrix Composites (AMCs) (INTECH Inc, London, 2014), pp. 3–7

    Google Scholar 

  5. M.N.E. Efzan, H.J. Kong, C.K. Kok, Adv. Mater. Res. 845, 355 (2014)

    Article  Google Scholar 

  6. C.H. Caceres, C.J. Davidson, Q.G. Wang, J.R. Griffiths, Q.G. Wang, Metall. Mater. Trans. A 30, 2611 (1999)

    Article  Google Scholar 

  7. H.R. Ammar, C. Moreau, A.M. Samuel, F.H. Samuel, H.W. Doty, Mater. Sci. Eng., A 489, 426 (2008)

    Article  Google Scholar 

  8. H. Zandbergen, S. Andersen, J. Jansen, Science 277, 1221 (1997)

    Article  Google Scholar 

  9. C. Caceres, C. Davidson, J. Griffiths, Q. Wang, Metall. Mater. Trans. A 30, 2611 (1999)

    Article  Google Scholar 

  10. M. Yıldırım, D. Özyürek, Mater. Des 51, 767 (2013)

    Article  Google Scholar 

  11. S. Zor, M. Zeren, H. Ozkazanc, E. Karakulak, Anti-Corros. Methods Mater. 57, 185 (2010)

    Article  Google Scholar 

  12. F. Grosselle, G. Timelli, F. Bonollo, Mater. Sci. Eng., A 527, 3536 (2010)

    Article  Google Scholar 

  13. L.Y. Wei, G.L. Dunlop, J. Alloys Compd. 232, 264 (1996)

    Article  Google Scholar 

  14. M. Shamsuzzoha, L.M. Hogan, D.J. Smith, P.A. Deymier, J. Cryst. Growth 112, 635 (1991)

    Article  Google Scholar 

  15. N.D. Mermin, N.W. Ashcroft, Solid State Physics (Holt, Rinehart and Winston, New York, 1976), pp. 671–692

    Google Scholar 

  16. M.G. Blaber, M.D. Arnold, M.J. Ford, J. Phys. Chem. C 113, 3041 (2009)

    Article  Google Scholar 

  17. M.H. Mulazimoglu, R.A.L. Drew, J.E. Gruzleski, Metall. Trans. A 20, 383 (1989)

    Article  Google Scholar 

  18. J. Wang, S. Yue, Y. Fautrelle, P.D. Lee, X. Li, Y. Zhong, Z. Ren, Sci. Rep. 6, 24585 (2016)

    Article  Google Scholar 

  19. M.B. Wasu, A.R. Raut, Int. J. Adv. Res. Chem. Sci. 2, 1 (2015)

    Google Scholar 

  20. J.C. Bae, S.S. Kim, M.H. Park, T.G. Ha, H.S. Lee, W.J. Kim, K.W. Jang, T.K. Song, H.J. Kim, J.S. Song, Integr. Ferroelectr. 65, 49 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Materials and Components Technology Development Program of MOTIE/KEIT [10077396, Development of aluminium spheroidized powder of 10 to 50 size over 320 MPa strength for additive manufacturing].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Jun Chae.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, G.M., Kim, D.G., Im, B. et al. Reflectance Characteristics of Al Alloys Containing Si, Mg, Cu, and Lanthanide (Nd, Sm, Gd) for 3D Printing. Met. Mater. Int. 25, 946–955 (2019). https://doi.org/10.1007/s12540-019-00256-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00256-9

Keywords

Navigation