Skip to main content
Log in

Understanding the isothermal growth kinetics of cdse quantum dots through microfluidic reactor assisted combinatorial synthesis

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

With the use of a microfluidic-assisted combinatorial reactor, the synthesis of CdSe quantum dots was optimized by varying one parameter at a time, and the isothermal growth kinetics of CdSe quantum dots using various models was analyzed. To understand precisely the nucleation and growth characteristics of CdSe quantum dots (QDs), we synthesized the CdSe QDs using various experimental conditions. Different model equations, like acceleratory growth-time curves, sigmoidal growth-time curves or Johnson-Mehl-Avrami-Kolmogorov (JMAK), acceleratory growthtime curves based on diffusion, geometric model growth-time curves, and nth order growth-time curves were fitted. Among all growth models, the JMAK model with \(\alpha = 1 - {e^{ - {{(kt)}^n}}}\), and n = 1 was the best fitting model with the MATLAB interactive curve-fitting procedure were used. Errors associated with the best-fitting model and statistics for the goodness of fit were analyzed. Most of the models were not as good as the other than the proposed model. The errors associated with the proposed model were minimal, and the growth kinetics and other associated statistical factors are very similar, for all the variables investigated. The minimal error associated with the reproducibility and the similar data for growth kinetics for all studied parameters indicated that microfluidic-assisted combinatorial synthesis can be used in the industrial production of QDs. By using the proposed model to obtain an understanding of growth of QDs, their size and properties can be managed and simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Beckmann, Crystallization: Basic Concepts and Industrial Applications, John Wiley & Sons, Weinheim, Germany (2013).

    Book  Google Scholar 

  2. J. Lee, J. Yang, S. G. Kwon, and T. Hyeon, Nat. Rev. Mater. 1, 16034 (2016).

    Article  ADS  Google Scholar 

  3. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich and A.P. Alivisatos, Nature. 404, 59 (2000).

    Article  ADS  Google Scholar 

  4. H. Yoon, A. Xu, G. E. Sterbinsky, D. A. Arena, Z. Wang, P. W. Stephens, Y. S. Meng and K. J. Carroll, Phys. Chem. Chem. Phys. 17, 1070 (2015).

    Article  Google Scholar 

  5. T. J. W. De Bruijn, W. A. De Jong and P. J. Van Den Berg, Thermochim. Acta. 45, 315 (1981).

    Article  Google Scholar 

  6. R. Crespo, F. A. Rocha, A. M. Damas and P. M. Martins, J. Biol. Chem. 287, 30595 (2012).

    Article  Google Scholar 

  7. A. J. Markworth, Scripta Metal. Matter. 18, 1309 (1984).

    Article  Google Scholar 

  8. R. Xie, Z. Li and X. Peng, J. Am. Chem. Soc. 131, 15457 (2009).

    Article  Google Scholar 

  9. A. M. Jokisaari, C. Permann and K. Thornton, Comp. Mater. Sci. 112, 128 (2016).

    Article  Google Scholar 

  10. M. Aoun, E. Plasari, R. David and J. Villermaux, Chem. Eng. Sci. 54, 1161 (1999).

    Article  Google Scholar 

  11. C. D. Dushkin, S. Saita, K. Yoshie and Y. Yamaguchi, Adv. Colloid Interfac. 88, 37 (2000).

    Article  Google Scholar 

  12. J. S. Owen, E. M. Chan, H. Liu and A. P. Alivisatos, J. Am. Chem. Soc. 132, 18206 (2010).

    Article  Google Scholar 

  13. C. R. Bullen and P. Mulvaney, Nano Lett. 4, 2303 (2004).

    Article  ADS  Google Scholar 

  14. Z. H. Sun, H. Oyanagi, M. Uehara, K. Yamashita, A. Fukano and H. Maeda, J. of Physics: Conference Series 190, 012120 (2009).

    ADS  Google Scholar 

  15. J. van Embden and P. Mulvaney, Langmuir 21, 10226 (2005).

    Article  Google Scholar 

  16. L. Qu, W. W. Yu and X. Peng, Nano Lett. 4, 465 (2004).

    Article  ADS  Google Scholar 

  17. H. Su, J. D. Dixon, A. Y. Wang, J. Low, J. Xu and J. Wang, Nanoscale Res. Lett. 5, 823 (2010).

    Article  ADS  Google Scholar 

  18. R. M. Maceiczyk, L. Bezinge and A. J. de Mello, Reaction Chemistry & Engineering 1, 261 (2016).

    Article  Google Scholar 

  19. C. N. R. Rao, A. Müller and A. K. Cheetham, Nanomaterials Chemistry: Recent Developments and New Directions, John Wiley & Sons, Weinheim, Germany (2007).

    Book  Google Scholar 

  20. J. E. House, Principles of Chemical Kinetics, Elsevier Science, London WC1X 8RR, UK (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan Gi Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, B., Hong, M.H., Kang, LS. et al. Understanding the isothermal growth kinetics of cdse quantum dots through microfluidic reactor assisted combinatorial synthesis. Journal of the Korean Physical Society 69, 1485–1492 (2016). https://doi.org/10.3938/jkps.69.1485

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.1485

Keywords

Navigation