Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 15, 2016

A validation experiment on indium recovery by electrowinning of aqueous electrolytes: Optimization of electrolyte composition

Ein Validierungsexperiment zur Indiumgewinnung mittels Elektroextraktion von wässrigen Elektrolyten: Optimierung der Elektrolyt-Zusammensetzung
  • Sungkyu Lee , Soo-Young Lee , Basudev Swain , Sung-Su Cho and Chan Gi Lee
From the journal Materials Testing

Abstract

A batch-type and lab-scale indium recovery method was developed via electrowinning (EW) to prove mass production-capability and economic recovery of indium from InCl3 crystals precipitated from the solvent extraction using a suitable phosphoric acid-based extractant. More precisely, the InCl3 crystals thus precipitated were further dissolved in three different aqueous electrolyte mixtures for subsequent electrowinning experiments: 0.05 M InCl3 – 0.7 M LiCl; 0.05M InCl3; 0.05 M InCl3 – 0.7 M NaCl. The effect of adding LiCl and NaCl supporting electrolytes to InCl3 on overall EW efficiency was thus comprehensibly investigated. Direct electroreduction of InCl3 using 0.05 M InCl3 aqueous electrolyte resulted in the highest indium metal purity of 99.996 % deposited on the copper cathode. Thus, metallic contents obtained from the validation experiments were further characterized using various analytical tools such as inductively coupled plasma/atomic emission spectroscopy (ICP/AES), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray fluorescence (XRF).

Kurzfassung

Es wurde ein chargentypisches Indiumgewinnungsverfahren im Labormassstab via Elektroextraktion (Electrowinning (EW)) entwickelt, um die Durchführbarkeit der Massenproduktionsfähigkeit der Indiumgewinnung aus InCl3-Kristallen, die aus der Solvent-Extraktion unter Verwendung eines geeigneten Phosphorsäure-basierten Extraktionsmittels ausgeschieden wurden, zu untersuchen. So wurden die so ausgeschiedenen InCl3-Kristalle für nachfolgende Elektroextraktionsexperimente in drei verschiedenen wässrigen Elektrolytmischungen aufgelöst: 0.05 M InCl3, 0.05 M InCl3 – 0.7 M LiCl und 0.05 M InCl3 – 0.7 M NaCl. Die Auswirkungen der Zugabe von LiCl und NaCl als unterstützende Elektrolyte zum InCl3 auf die Gesamt-Elektroextraktionseffizienz wurden dadurch umfassend untersucht. Die direkte Elektroreduktion von InCl3 unter Verwendung des wässrigen 0.05 M InCl3-Elektrolyten ergab die höchste Reinheit des Indiummetalls von 99.996 %, das auf der Kupferelektrode ausgeschieden wurde. Die Metallgehalte, die so in den Validierungsexperimenten gewonnen wurden, wurden anschließend charakterisiert, indem verschiedene analytische Verfahren angewandt wurden, unter anderem die gekoppelte Plasma/Atomemissionsspektroskopie (Plasma/Atomic Emission Spectroscopy (ICP/AES)), die gekoppelte energiedispersive Röntgenspektroskopie mit Rasterelektronenmikroskop (REM) und die Röntgenfluoreszenz.


*Correspondence Address, Dr. Sungkyu Lee, Plant Engineering Division, Institute for Advanced Engineering (IAE), 175-28 Goan-ro 51 beon-gil, Baegam-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, 17180, Korea, E-mail:

Sungkyu Lee, born 1959, received his BSc from Hanyang University of Seoul, Korea, in 1982. He graduated with an MSc and PhD in Materials Science and Engineering from University of Minnesota in Twin Cities, USA, in 1991 and 1994, respectively. Now, he is working as Chief Researcher at the Plant Engineering Division, Institute for Advanced Engineering, Yongin-si, Gyeonggi-do, Korea.

Soo-Young Lee, born 1979, received his BSc and MSc in the School of Energy, Materials & Chemical Engineering of Korea University of Technology & Education, Cheonan-si, Korea and in Materials Science and Engineering at Yonsei University, Seoul, Korea, in 2003 and 2011, respectively. Now, he is working as Senior Researcher at the Advanced Materials and Processing Center, Institute for Advanced Engineering, Yongin-si, Gyeonggi-do, Korea.

Basudev Swain, born 1976, received his BSc from Utkal University of Orissa, India, in 1996. He graduated with an MSc in Chemistry from Berhampur University of Orissa, India and received his PhD in Analytical Chemistry from Chungnam National University, Daejeon, Korea, in 1998 and 2007, respectively. Now, he is working as Senior Researcher at the Advanced Materials & Processing Center, Institute for Advanced Engineering, Yongin-si, Gyeonggi-do, Korea.

Sung-Su Cho, born 1973, received his BSc from Kyonggi University, Suwon, Korea, in 2005. He graduated as MSc in Energy Systems Research at Ajou University, Suwon, Korea, in 2007. Now, he is working as Chief Researcher at the Advanced Materials and Processing Center, Institute for Advanced Engineering, Yongin-si, Gyeonggi-do, Korea. In addition, he is currently enrolled in the PhD program at the Energy Systems Division, Ajou University, Suwon-si, Korea.

Chan Gi Lee, born 1976, received his BSc and MSc in Chemical Engineering from Chungnam National University, Daejeon, Korea, in 2001 and 2003, respectively. His Ph.D. was conferred in Molecule and Materials Science, Graduate School of Engineering at Kyushu University, Fukuoka, Japan, in 2009. Now, he is working as a Principal Researcher at the Advanced Materials & Processing Center, Institute for Advanced Engineering, Yongin-si, Gyeonggi-do, Korea.


References

1 S.Virolainen, D.Ibana, E.Paatero: Recovery of indium from indium tin oxide by solvent extraction, Hydrometallurgy107 (2011), pp. 566110.1016/j.hydromet.2011.01.005Search in Google Scholar

2 K.Park, W.Sato, G.Grause, T.Kameda, T.Yoshioka: Recovery of indium from In2O3 and liquid crystal display powder via a chloride volatilization process using polyvinyl chloride, Thermochimica Acta493 (2009), pp. 10510810.1016/j.tca.2009.03.003Search in Google Scholar

3 H.-M.Liu, C.-C.Wu, Y.-H.Lin, C.-K.Chiang: Recovery of indium from etching wastewater during super-critical carbon dioxide extraction, J. Hazard. Mater.172 (2009), pp. 74474810.1016/j.jhazmat.2009.07.098Search in Google Scholar PubMed

4 T.Ogi, K.Tamaoki, N.Saitoh, A.Higashi, Y.Konishi: Recovery of indium from aqueous solutions by the Gram-negative bacterium Shewanella algae, Biochemical Engineering Journal63 (2012), pp. 12913310.1016/j.bej.2011.11.008Search in Google Scholar

5 Y.Li, Z.Liu, Q.Li, Z.Liu, L.Zeng: Recovery of indium from used indium-tin oxide (ITO) targets, Hydrometallurgy105 (2011), pp. 20721210.1016/j.hydromet.2010.09.006Search in Google Scholar

6 W.-L.Chou, Y.-H.Huang: Electrochemical removal of indium ions from aqueous solution using iron electrodes, J. Hazard. Mater.172 (2009), pp. 465310.1016/j.hazmat.2009.06.119Search in Google Scholar

7 R. C.Valderrama, M.Miranda-Hernández, P. J.Sebastian, A. L.Ocampo: Electrodeposition of indium onto Mo/Cu for the deposition of Cu(In, Ga)Se2 thin films, Electrochim. Acta53 (2008), pp. 3714372110.1016/j.electacta.2007.11.069Search in Google Scholar

8 M.-S.Lee, J.-G.Ahn, J.-W.Ahn: Recovery of copper, tin and lead from the spent nitric etching solutions of printed circuit board and regeneration of the etching solution, Hydrometallurgy70 (2003), pp. 232910.1016/S0304-386X(03)00045-8Search in Google Scholar

9 Y.Chung, C.-W.Lee: Electrochemical behaviors of Indium, J. Electrochem. Sci. Technol.3 (2012), pp. 11310.5229/JECST.2012.3.1.1Search in Google Scholar

Published Online: 2016-12-15
Published in Print: 2016-11-16

© 2016, Carl Hanser Verlag, München

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.3139/120.110953/html
Scroll to top button